
BrowserFence Dashboard - Software
Requirements Specification
1. Project Overview
1.1 Project Description

BrowserFence is a comprehensive Remote Browser Isolation (RBI) security dashboard that
provides organizations with centralized management and monitoring of browser-based
security threats. The application serves as a command center for security teams to manage
isolated browser sessions, configure security policies, monitor user activity, and analyze
security threats in real-time.

1.2 Purpose and Goals

1.3 Target Users

1.4 Key Value Propositions

2. Core Features

Primary Goal: Provide a unified interface for managing remote browser isolation
infrastructure
Security Focus: Enable proactive threat detection and policy enforcement for web-
based activities
User Experience: Deliver an intuitive, responsive dashboard for security administrators
and analysts
Scalability: Support enterprise-level deployments with multiple workspaces and
extensive user management

Security Administrators: Configure policies, manage users, and oversee system
security
Security Analysts: Monitor threats, analyze logs, and investigate security incidents
IT Administrators: Manage applications, integrations, and system configurations
End Users: Access secured browser sessions through the RBI infrastructure

Centralized security policy management
Real-time threat monitoring and analytics
Comprehensive user and session management
Enterprise-grade scalability and integration capabilities
Intuitive interface reducing complexity of security operations

2.1 Dashboard Overview

Purpose: Provide at-a-glance system status and security metrics
Key User Flows:

Components:

Acceptance Criteria:

2.2 Application Management

Purpose: Configure and manage applications available for remote browser isolation
Key User Flows:

Components:

Acceptance Criteria:

1. User logs in → Views dashboard → Reviews security metrics → Takes action on alerts
2. User navigates to specific sections via dashboard cards
3. User monitors real-time system performance and threat status

Security metrics cards (Active Sessions, Blocked Threats, Policy Violations, User
Activity)
System status indicators
Recent activity feed
Quick action buttons
Time-frame selection dropdown with mock data integration

Dashboard loads within 2 seconds
All metrics display current data
Cards are clickable and navigate to relevant sections
Responsive design works on all viewport sizes
Time frame selector updates displayed data ranges

1. Admin views application list → Creates new application → Configures settings → Saves
2. Admin toggles application status (enabled/disabled)
3. Admin edits existing application configurations

Application list with status indicators
Application creation panel with comprehensive form
Enable/disable toggle switches
Search and filtering capabilities

Applications can be created, edited, and deleted

2.3 Policy Management

Purpose: Define and enforce security policies for browser isolation sessions
Key User Flows:

Components:

Acceptance Criteria:

2.4 User Management
Purpose: Manage user accounts, permissions, and access controls
Key User Flows:

Components:

Status changes reflect immediately in the interface
Form validation prevents invalid configurations
Bulk operations supported for multiple applications

1. Security admin creates policy → Configures rules → Assigns to users/groups →
Activates

2. Admin reviews existing policies → Modifies settings → Updates assignments
3. Admin monitors policy compliance and violations

Policy list with status and assignment information
Policy creation panel with rule configuration
Policy assignment interface
Compliance monitoring dashboard

Policies can be created with complex rule sets
Real-time policy enforcement
Policy conflicts are detected and resolved
Audit trail for all policy changes

1. Admin adds new user → Sets permissions → Assigns groups → Activates account
2. Admin reviews user activity → Adjusts permissions → Monitors compliance
3. Admin manages user sessions and access history

User list with detailed information table
Add user modal with accordion-based form sections:

Personal Information
Security Settings
Group Assignments
Permissions & Access

Acceptance Criteria:

2.5 Security Tools

2.5.1 Threat Logs

Purpose: Monitor and analyze security threats and incidents
Components: Real-time threat log viewer, filtering and search capabilities, threat
categorization
Acceptance Criteria: Real-time log updates, comprehensive filtering, exportable reports

2.5.2 Templates

Purpose: Create reusable configuration templates
Components: Template library, template creation wizard, template application interface
Acceptance Criteria: Template versioning, sharing capabilities, validation before application

2.5.3 Recordings

Purpose: Manage session recordings for compliance and analysis
Components: Recording list, playback interface, retention policy management
Acceptance Criteria: Secure storage, compliance with data retention policies, search
capabilities

2.5.4 App Catalog

Purpose: Browse and deploy pre-configured applications
Components: Application gallery, deployment interface, configuration options
Acceptance Criteria: Easy browsing and deployment, configuration validation, rollback
capabilities

2.6 Insights and Analytics
Purpose: Provide comprehensive security analytics and reporting
Key User Flows:

Compliance & Monitoring

User activity monitoring
Permission management interface

Complete user lifecycle management (create, update, disable, delete)
Role-based access control (RBAC) implementation
User activity tracking and reporting
Bulk user operations supported

1. Analyst views insights → Selects metrics → Generates reports → Exports data

Components:

Acceptance Criteria:

3. UI/UX Design System
3.1 Design System Foundation

Framework: Preline UI design system with TailwindCSS
Typography: Inter font family with defined weight and size scales
Color Palette:

3.2 Layout Structure

3.2.1 Top Navigation Bar

Components:

Responsive Behavior:

2. Analyst creates custom dashboards → Configures alerts → Monitors trends

Interactive charts and graphs
Geographic threat mapping
Custom report builder
Alert configuration interface

Real-time data visualization
Customizable reporting periods
Export capabilities (PDF, CSV, JSON)
Automated report scheduling

Primary: Blue-based theme (#030213, #2563eb , #1d4ed8)
Secondary: Gray scale for neutral elements
Status Colors: Green (success), Red (danger), Yellow (warning), Blue (info)

Logo and application branding (BrowserFence with Shield icon)
Workspace selector with badges
Navigation dropdowns (Workspaces, Projects, Integrations)
Search functionality with animation
Notification dropdown
Settings dropdown
User profile dropdown

Desktop: Full navigation visible

3.2.2 Sidebar Navigation

States:

Sections:

Interaction:

3.2.3 Main Content Area

Layout: Responsive grid system adapting to content type
Spacing: Consistent padding and margins using design tokens
Components: Cards, tables, forms, charts, and modal panels

3.3 Component Specifications

3.3.1 Interactive Elements

Buttons:

Form Elements:

Data Display:

Tablet: Condensed navigation with dropdowns
Mobile: Hamburger menu with sidebar overlay

Expanded (desktop default): Full labels and icons visible
Collapsed (tablet): Icons only with tooltips
Hidden (mobile): Off-canvas with overlay

Overview: Dashboard, Applications, Policies, Insights, User Management
Security Tools: Threat Logs, Templates, Recordings, App Catalog

Smooth transitions between states
Active section highlighting
Hover effects and focus states

Primary (blue background), Secondary (outline), Ghost (transparent)
Size variants: sm, md, lg
States: default, hover, active, disabled, loading

Input fields with validation states
Dropdowns with search capabilities
Toggle switches for enable/disable actions
Multi-select components for assignments

3.3.2 Modal and Panel System

Creation Panels:

Dialog Modals:

3.4 Responsive Design Requirements

Breakpoints:

Adaptive Behavior:

4. System Architecture
4.1 Frontend Architecture

Framework: React 18 with TypeScript
State Management: Custom hooks for application and policy management
Styling: TailwindCSS v4 with custom design tokens
Component Library: ShadCN/UI components with Preline customizations

4.2 Component Structure

Tables with sorting, filtering, and pagination
Cards with metrics and status indicators
Progress indicators for compliance tracking
Badge components for status and categorization

Full-viewport sliding panels for complex forms
Accordion-based organization for logical groupings
Form validation with real-time feedback
Save/cancel actions with confirmation

Confirmation dialogs for destructive actions
Information displays for detailed views
Alert notifications for system messages

Mobile: < 768px
Tablet: 768px - 1024px
Desktop: > 1024px

Mobile-first approach with progressive enhancement
Touch-friendly interface elements
Optimized navigation for smaller screens
Content reflow for different viewport sizes

4.3 State Management Patterns

Custom Hooks:

Data Flow:

4.4 Integration Requirements
Backend API: RESTful API for data operations (mocked in current implementation)
Real-time Updates: WebSocket connections for live monitoring
External Integrations: Support for SIEM, LDAP, and other security tools

5. Data Models
5.1 Core Entities

App.tsx (Main application shell)

├── Navigation Components

│ ├── TopNavigation (header with dropdowns)

│ ├── Sidebar (collapsible navigation)

│ └── Breadcrumb (page context)

├── Content Components

│ ├── DashboardContent

│ ├── ApplicationsContent

│ ├── PoliciesContent

│ ├── UserManagementContent

│ └── Security Tool Components

├── Creation Panels

│ ├── ApplicationCreationPanel

│ ├── PolicyCreationPanel

│ └── Template/User Creation Components

└── Shared Components

├── UI Components (buttons, inputs, tables)

├── Chart Components (analytics visualization)

└── Utility Components (loading, error states)

useApplicationManagement : Handles application CRUD operations and state
usePolicyManagement : Manages policy configurations and assignments
Sidebar and responsive behavior managed in main App component

Unidirectional data flow from parent to child components
Event handling passed down as props
Local state for UI interactions, global state for data management

5.1.1 User Entity

5.1.2 Application Entity

5.1.3 Policy Entity

interface User {

id: string;

email: string;

firstName: string;

lastName: string;

role: 'admin' | 'analyst' | 'user';

department: string;

status: 'active' | 'inactive' | 'suspended';

lastLogin: Date;

createdAt: Date;

permissions: Permission[];

groupMemberships: GroupMembership[];

complianceScore: number;

riskLevel: 'low' | 'medium' | 'high';

}

interface Application {

id: string;

name: string;

description: string;

url: string;

category: string;

status: 'enabled' | 'disabled';

isolationPolicy: Policy;

allowedUsers: User[];

configuration: ApplicationConfig;

createdAt: Date;

updatedAt: Date;

}

interface Policy {

id: string;

name: string;

description: string;

type: 'security' | 'access' | 'compliance';

rules: PolicyRule[];

assignedUsers: User[];

assignedGroups: Group[];

status: 'active' | 'inactive' | 'draft';

priority: number;

createdAt: Date;

5.1.4 Session Entity

5.2 Workspace and Organizational Models

5.2.1 Workspace Entity

5.2.2 Project Entity

updatedAt: Date;

}

interface BrowserSession {

id: string;

userId: string;

applicationId: string;

startTime: Date;

endTime?: Date;

duration: number;

status: 'active' | 'completed' | 'terminated';

ipAddress: string;

userAgent: string;

activities: SessionActivity[];

threats: ThreatEvent[];

}

interface Workspace {

id: string;

name: string;

description: string;

type: 'Development' | 'Production' | 'Testing';

icon: React.ComponentType;

settings: WorkspaceSettings;

members: WorkspaceMember[];

projects: Project[];

createdAt: Date;

}

interface RBIProject {

id: string;

name: string;

description: string;

workspaceId: string;

status: 'Active' | 'In Progress' | 'Completed' | 'On Hold';

priority: 'High' | 'Medium' | 'Low';

progress: number;

icon: React.ComponentType;

5.3 Security and Monitoring Models

5.3.1 Threat Event Entity

5.3.2 Integration Entity

5.4 Data Relationships

6. User Roles & Permissions

startDate: Date;

targetDate: Date;

assignedUsers: User[];

}

interface ThreatEvent {

id: string;

sessionId: string;

type: 'malware' | 'phishing' | 'data_exfiltration' | 'policy_violation';

severity: 'low' | 'medium' | 'high' | 'critical';

description: string;

detectionTime: Date;

source: string;

status: 'detected' | 'investigating' | 'resolved' | 'false_positive';

responseActions: ResponseAction[];

}

interface Integration {

id: string;

name: string;

type: string;

category: 'SIEM' | 'Identity' | 'Productivity' | 'Developer Tools';

status: 'connected' | 'disconnected' | 'error';

icon: React.ComponentType;

lastSync: string;

configuration: IntegrationConfig;

metrics: IntegrationMetrics;

}

Users belong to Workspaces and can be assigned to Projects
Applications are governed by Policies and generate Sessions
Sessions can contain multiple Threat Events and Activities
Policies can be assigned to Users, Groups, or Applications
Integrations sync data across Workspaces and external systems

6.1 Role Definitions

6.1.1 Super Administrator

Capabilities:

6.1.2 Security Administrator

Capabilities:

6.1.3 Security Analyst

Capabilities:

6.1.4 IT Administrator

Capabilities:

Full system access and configuration
User and workspace management
System-wide policy creation and enforcement
Integration and API management
Audit and compliance reporting
System maintenance and updates

Policy creation and management
User security settings and permissions
Threat monitoring and response
Security tool configuration
Compliance reporting
Application security configuration

Threat log monitoring and analysis
Security incident investigation
Report generation and analysis
User activity monitoring
Policy compliance review
Limited application access management

Application management and deployment
User account creation and basic management
Template management
Integration monitoring
Basic reporting and analytics

6.1.5 End User

Capabilities:

6.2 Permission Matrix

Feature Super
Admin

Sec Admin Sec
Analyst

IT
Admin

End User

Dashboard Access Full Full Limited Limited Personal

User Management Full Limited View Only Basic None

Policy Management Full Full View Only None None

Application
Management

Full Security
Config

View Only Full Assigned
Only

Threat Monitoring Full Full Full View
Only

None

System Settings Full Limited None Limited None

Integrations Full Limited View Only Monitor None

Reporting Full Full Limited Limited Personal

6.3 Access Control Implementation

7. Design System Specifications
7.1 Typography System (Preline Standard)
Primary Font: Inter
Font Weights: 300 (light) to 900 (black)
Size Scale:

System performance monitoring

Access assigned applications through RBI
View personal session history
Basic profile management
Access to help and support resources

Role-Based Access Control (RBAC): Primary authorization model
Attribute-Based Access Control (ABAC): For fine-grained permissions
Multi-Factor Authentication (MFA): Required for administrative roles
Session Management: Automatic timeout and re-authentication
Audit Logging: All permission changes and access attempts logged

7.2 Color Palette

Primary Colors:

Status Colors:

Component Colors:

7.3 Spacing System
Base Unit: 4px
Scale: 1 (4px), 2 (8px), 3 (12px), 4 (16px), 6 (24px), 8 (32px), 12 (48px), 16 (64px)
Component Spacing:

7.4 Component Specifications

xs: 12px (0.75rem)
sm: 14px (0.875rem) - Base application text
base: 16px (1rem)
lg: 18px (1.125rem)
xl: 20px (1.25rem)
2xl: 24px (1.5rem)
3xl: 30px (1.875rem)
4xl: 36px (2.25rem)

Blue: #2563eb (primary), #1d4ed8 (hover), #1e40af (active)
Background: #ffffff (light), #f8fafc (secondary)
Text: #111827 (primary), #6b7280 (secondary), #9ca3af (muted)

Success: #10b981 (green)
Warning: #f59e0b (amber)
Error: #ef4444 (red)
Info: #3b82f6 (blue)

Border: rgba(0, 0, 0, 0.1)
Input Background: #f3f3f5

Card Background: #ffffff

Sidebar: #f8fafc

Card padding: 24px (6)
Button padding: 12px 16px (3 4)
Form field spacing: 16px (4)
Section margins: 32px (8)

7.4.1 Buttons

7.4.2 Form Elements

7.4.3 Cards and Containers

7.5 Icon System
Icon Library: Lucide React
Standard Size: 16px (4) for inline, 20px (5) for standalone
Color: Inherits from parent or uses semantic colors
Usage: Consistent placement and sizing across components

8. Interaction & Behavior Specifications

/* Primary Button */

.btn-primary {

background: #2563eb;

color: #ffffff;

border-radius: 6px;

padding: 8px 16px;

font-weight: 500;

font-size: 14px;

}

/* Secondary Button */

.btn-secondary {

background: transparent;

color: #2563eb;

border: 1px solid #e5e7eb;

border-radius: 6px;

padding: 8px 16px;

}

Input height: 40px (10)
Border radius: 6px
Border color: #e5e7eb

Focus ring: 2px #3b82f6 with 0.2 opacity
Label font-weight: 500

Border radius: 8px
Border: 1px solid #e5e7eb

Background: #ffffff

Padding: 24px
Shadow: 0 1px 3px rgba(0, 0, 0, 0.1)

8.1 Navigation Behavior

8.1.1 Sidebar Navigation

Responsive States:

Transitions:

User Interactions:

8.1.2 Top Navigation

Search Functionality:

Dropdown Menus:

8.2 Data Interaction Patterns

8.2.1 Table Interactions

Desktop Expanded (>1024px): Full sidebar with labels
Desktop Collapsed (>1024px): Icon-only sidebar with tooltips
Mobile Hidden (<768px): Off-canvas sidebar with overlay

Sidebar width changes: 300ms ease-in-out
Icon to label transitions: 200ms ease
Mobile slide-in: 250ms cubic-bezier(0.4, 0, 0.2, 1)

Toggle button changes sidebar state
Active section highlighted with blue background
Hover effects on navigation items
Auto-close sidebar on mobile after navigation

Animated expansion from 40px to 280px
Smooth 300ms transition with easing
Auto-focus on input when expanded
Escape key closes search
Click outside closes search

Slide-down animation with fade-in
Click outside to close
Keyboard navigation support
Proper focus management

Sorting: Click column headers to sort, visual indicators for sort direction
Filtering: Real-time filtering as user types
Pagination: Configurable page sizes with navigation controls
Row Selection: Individual and bulk selection with visual feedback
Inline Editing: Click-to-edit for appropriate fields

8.2.2 Form Interactions

Validation: Real-time validation with error messages
Auto-save: Draft saving for long forms
Field Dependencies: Dynamic field visibility based on selections
Progress Indication: Multi-step forms show progress

8.3 Modal and Panel Behavior

8.3.1 Creation Panels

Opening: Slide in from right side of screen
Sizing: Full viewport (96vw × 96vh)
Content Organization: Accordion sections for logical grouping
Closing:

Form Behavior:

8.3.2 Confirmation Dialogs

Destructive Actions: Always require confirmation
Information Display: Non-blocking informational modals
Loading States: Show progress for long-running operations

8.4 Animation and Transitions

Principles:

X button in top-right
Cancel button dismisses with confirmation
Click outside does not close (prevents accidental loss)

Real-time validation
Section completion indicators
Auto-save functionality
Confirmation on unsaved changes

Smooth, purposeful animations
Consistent timing (200-300ms for most transitions)
Easing functions: ease-in-out for most, cubic-bezier for complex

Specific Animations:

8.5 Error Handling and Feedback

8.5.1 Error States

Form Errors: Inline validation with red styling and clear messages
Network Errors: Toast notifications with retry options
System Errors: Full-page error states with recovery options
Permission Errors: Informative messages with next steps

8.5.2 Success Feedback

Action Confirmation: Toast notifications for successful operations
Visual Feedback: Green checkmarks and success styling
Progress Indicators: Show completion status for multi-step processes

8.5.3 Loading States

Page Loading: Skeleton screens while content loads
Action Loading: Button spinners for form submissions
Data Loading: Table and card loading states
Progressive Loading: Load critical content first

9. Non-Functional Requirements
9.1 Performance Requirements

9.1.1 Load Times

9.1.2 Scalability

Page transitions: Smooth scroll to top
Card hover effects: Subtle lift and shadow
Button interactions: Scale and color transitions
Loading states: Spinner or skeleton loading
Toast notifications: Slide-in from top-right

Initial page load: < 3 seconds on 3G connection
Navigation between sections: < 1 second
Dashboard data refresh: < 2 seconds
Search results: < 500ms
Form submissions: < 2 seconds with feedback within 200ms

Support 10,000+ concurrent users

9.1.3 Resource Usage

9.2 Security Requirements

9.2.1 Authentication and Authorization

9.2.2 Data Security

9.2.3 Privacy and Compliance

9.3 Accessibility Requirements

9.3.1 WCAG 2.1 AA Compliance

Handle datasets with 100,000+ records
Support workspaces with 50,000+ users
Maintain performance with 1M+ threat events

Memory usage: < 100MB for typical session
Network efficiency: Minimize API calls through caching
Bundle size: < 1MB for initial load, code splitting for routes
CPU usage: Efficient rendering for large datasets

Multi-factor authentication for admin roles
JWT tokens with secure storage
Session timeout after 8 hours of inactivity
Role-based access control (RBAC)
Attribute-based access control (ABAC) for fine-grained permissions

Encryption in transit (HTTPS/TLS 1.3)
Encryption at rest for sensitive data
Input validation and sanitization
XSS and CSRF protection
Secure API key management

GDPR compliance for user data
SOC 2 Type II compliance
Data retention policies
Audit logging for all administrative actions
Right to data deletion

Keyboard navigation for all interactive elements
Screen reader compatibility

9.3.2 Assistive Technology Support

9.4 Browser and Device Support

9.4.1 Browser Support

9.4.2 Device Support

9.5 Reliability and Availability

9.5.1 Uptime Requirements

9.5.2 Error Recovery

Color contrast ratios meeting AA standards
Alternative text for images and icons
Focus indicators visible and appropriate

ARIA labels and roles properly implemented
Semantic HTML structure
Skip navigation links
Proper heading hierarchy
Form labels and error announcements

Chrome 90+ (primary)
Firefox 88+ (secondary)
Safari 14+ (secondary)
Edge 90+ (secondary)

Desktop: Full functionality
Tablet: Optimized responsive experience
Mobile: Core functionality with touch optimization
Screen sizes: 320px to 3840px width

99.9% availability during business hours
Planned maintenance windows: 4 hours/month maximum
Recovery time objective (RTO): 4 hours
Recovery point objective (RPO): 1 hour

Graceful degradation for API failures
Offline capability for viewing cached data
Automatic retry mechanisms for failed operations
User-friendly error messages with recovery guidance

10. Technical Implementation Details
10.1 Frontend Technology Stack

10.2 Code Organization

10.3 State Management Patterns

Custom Hooks Strategy:

10.4 Performance Optimizations

{

"framework": "React 18 with TypeScript",

"styling": "TailwindCSS v4 with custom design tokens",

"components": "ShadCN/UI with Preline customizations",

"animations": "Motion/React (formerly Framer Motion)",

"icons": "Lucide React",

"charts": "Recharts for data visualization",

"state": "Custom hooks with React state",

"routing": "React Router (if multi-page)",

"forms": "React Hook Form with validation"

}

src/

├── components/ # Reusable UI components

│ ├── ui/ # ShadCN base components

│ ├── navigation/ # Navigation-specific components

│ └── figma/ # Figma-imported components

├── pages/ # Page-level components

├── hooks/ # Custom React hooks

├── data/ # Mock data and constants

├── types/ # TypeScript type definitions

├── utils/ # Helper functions

└── styles/ # Global styles and design tokens

useApplicationManagement : Application CRUD operations
usePolicyManagement : Policy configuration and assignment
Individual hooks for complex forms and UI state
Context providers for global state when needed

Code Splitting: Route-based splitting for reduced initial bundle
Lazy Loading: Dynamic imports for heavy components
Memoization: React.memo and useMemo for expensive calculations

10.5 Development Workflow
File Naming Conventions:

Import Organization:

11. API and Integration Requirements
11.1 RESTful API Specifications

11.1.1 Authentication Endpoints

11.1.2 User Management Endpoints

Virtual Scrolling: For large data lists and tables
Image Optimization: Responsive images with fallback handling

Components: PascalCase (e.g., DashboardContent.tsx)
Hooks: camelCase starting with 'use' (e.g., useApplicationManagement.ts)
Utilities: camelCase (e.g., helpers.ts)
Types: camelCase interfaces (e.g., User , Application)

// External dependencies

import React, { useState } from "react";

import { motion } from "motion/react";

// UI components

import { Button } from "./components/ui/button";

// Internal components

import DashboardContent from "./components/DashboardContent";

// Hooks and utilities

import { useApplicationManagement } from "./hooks/useApplicationManagement";

// Types and data

import type { User } from "./types";

import { navigationItems } from "./data/navigationData";

POST /api/auth/login

POST /api/auth/logout

POST /api/auth/refresh

GET /api/auth/profile

PUT /api/auth/profile

POST /api/auth/change-password

11.1.3 Application Management Endpoints

11.1.4 Policy Management Endpoints

11.2 Real-Time Communication
WebSocket Connections:

Message Format:

GET /api/users # List users with pagination

POST /api/users # Create new user

GET /api/users/:id # Get user details

PUT /api/users/:id # Update user

DELETE /api/users/:id # Delete user

GET /api/users/:id/sessions # User session history

PUT /api/users/:id/status # Enable/disable user

GET /api/applications # List applications

POST /api/applications # Create application

GET /api/applications/:id # Get application

PUT /api/applications/:id # Update application

DELETE /api/applications/:id # Delete application

PUT /api/applications/:id/status # Toggle application status

GET /api/policies # List policies

POST /api/policies # Create policy

GET /api/policies/:id # Get policy

PUT /api/policies/:id # Update policy

DELETE /api/policies/:id # Delete policy

POST /api/policies/:id/assign # Assign policy to users/groups

Threat event notifications
User activity monitoring
System status updates
Real-time dashboard metrics

{

"type": "THREAT_DETECTED",

"payload": {

"sessionId": "uuid",

"threatType": "malware",

"severity": "high",

11.3 External Integrations

11.3.1 SIEM Integration

11.3.2 Identity Provider Integration

11.3.3 Productivity Tool Integration

12. Future Extensions and Roadmap
12.1 Planned Features

12.1.1 Advanced Analytics

12.1.2 Mobile Application

"timestamp": "2024-01-15T10:30:00Z"

}

}

Send threat events and logs
Receive alerts and triggers
Bi-directional data synchronization
Standard formats: CEF, STIX/TAXII

LDAP/Active Directory synchronization
SAML/OIDC single sign-on
User attribute mapping
Group membership synchronization

Microsoft 365 integration
Google Workspace integration
Slack notifications
Custom webhook support

Machine learning-based threat detection
Predictive analytics for risk assessment
Custom dashboard creation
Advanced reporting and visualization

iOS and Android native apps
Core functionality for mobile users
Push notifications for critical alerts
Offline capability for viewing reports

12.1.3 API Gateway

12.2 Scalability Considerations

12.2.1 Multi-Tenancy

12.2.2 Global Deployment

12.3 Technology Evolution

12.3.1 Frontend Modernization

12.3.2 Backend Enhancements

13. Implementation Guidelines
13.1 Development Phases

Phase 1: Core Infrastructure (Weeks 1-4)

Public API for third-party integrations
Rate limiting and quota management
API key management
Developer portal and documentation

Tenant isolation and data segregation
Customizable branding per tenant
Tenant-specific configurations
Usage and billing analytics

Multi-region support
Content delivery network (CDN) integration
Localization and internationalization
Regional compliance requirements

Progressive Web App (PWA) capabilities
Edge computing for improved performance
Advanced caching strategies
Component library extraction

Microservices architecture
Event-driven architecture
Container orchestration
Serverless functions for specific operations

Phase 2: Core Features (Weeks 5-12)

Phase 3: Advanced Features (Weeks 13-20)

Phase 4: Polish and Integration (Weeks 21-24)

13.2 Quality Assurance

13.2.1 Testing Strategy

13.2.2 Code Quality Standards

Set up development environment and build tools
Implement basic layout and navigation
Create foundational components and design system
Set up routing and state management

Implement Dashboard with basic metrics
Build Application and Policy management
Create User Management interface
Develop creation panels and forms

Add Security Tools (Threat Logs, Templates, etc.)
Implement Insights and Analytics
Build notification and alert systems
Add responsive design and mobile optimization

Performance optimization
Security hardening
Accessibility compliance
Integration testing and documentation

Unit tests for utility functions and hooks
Component testing for UI components
Integration testing for user flows
End-to-end testing for critical paths
Performance testing for large datasets

TypeScript strict mode
ESLint and Prettier configuration
Code review requirements
Automated security scanning
Documentation requirements

13.3 Deployment Strategy

13.3.1 Environment Setup

13.3.2 CI/CD Pipeline

14. Success Metrics and KPIs
14.1 User Experience Metrics

14.2 Technical Performance Metrics

14.3 Business Impact Metrics

Appendices

Development: Local development with hot reloading
Staging: Pre-production testing environment
Production: High-availability deployment
Feature branches: Isolated feature development

Automated building and testing
Security vulnerability scanning
Performance regression testing
Automated deployment to staging
Manual approval for production deployment

Page load times < 3 seconds
Task completion rates > 95%
User satisfaction scores > 4.5/5
Support ticket reduction by 40%

System uptime > 99.9%
API response times < 200ms
Error rates < 0.1%
Security vulnerability resolution within 24 hours

User adoption rate > 80% within 6 months
Productivity increase in security operations
Reduction in security incident response time
Cost savings from automation

A. Glossary of Terms

B. Reference Links

C. Contact Information

This requirements document serves as the single source of truth for rebuilding the
BrowserFence dashboard application. All features, specifications, and requirements outlined
here should be implemented to ensure consistency with the original design and functionality.

RBI: Remote Browser Isolation - Security technology that executes web browser
sessions in isolated environments
SIEM: Security Information and Event Management - System for analyzing security
alerts
RBAC: Role-Based Access Control - Access control method based on user roles
ABAC: Attribute-Based Access Control - Fine-grained access control using attributes

Preline UI Documentation: Component specifications and design patterns
WCAG 2.1 Guidelines: Accessibility compliance requirements
OWASP Top 10: Security vulnerability prevention
React Documentation: Framework-specific best practices

Product Owner: Responsible for feature requirements and prioritization
Technical Lead: Oversees architecture and technical decisions
UX Designer: Ensures design consistency and user experience
Security Team: Reviews security requirements and implementations

